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The Six-Vertex Model Eigenvectors as Critical 
Limit of the Eight-Vertex Model Bethe Ansatz 
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The critical limit of the eight-vertex model eigenvectors obtained by means of 
the generalized Bethe Ansatz is shown to give the six-vertex eigenvectors as con- 
structed in a previous paper by two of the authors. Furthermore, an explicit 
mapping is established between these eigenvectors and the usual Bethe Ansatz 
eigenvectors of the six-vertex model. This allows one to show that the index v 
labeling the eight-vertex eigenstates becomes exactly the third component of the 
total spin in the critical limit. 
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1. I N T R O D U C T I O N  

The Bethe Ansatz provides one of the nicest and most effective ways to 
exactly solve an eigenvalue problem in physics. In statistical mechanics, the 
pioneering works on six -m and eight-vertex (2'3) models (with two states per 
bond) and their more recent generalizations to a large variety of multistate 
vertex models (with q I> 2 states per bond) (see, e.g., ref. 4) represent the 
highlights of the Bethe Ansatz technique. 

The six-vertex model is actually a limit case of the eight-vertex model. 
However, the Bethe Ansatz solution of the latter in refs. 2 and 3 is much 
more involved than its six-vertex counterpart. Moreover, when the limit 
that leads to the six-vertex model is taken in the results of refs. 2 and 3, 
singularities appear in different steps of the calculations. As a consequence, 
no systematic study has been carried out, to our knowledge, on the connec- 
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tion between the usual Bethe Ansatz for the six-vertex model and the 
critical limit of the generalized Bethe Ansatz introduced in refs. 2 and 3. 

In a recent paper (5) an alternative Bethe Ansatz for the six-vertex 
model has been developed. It is based on the methods applied in ref. 3 to 
the eight-vertex case and is well suited to study the connection with critical 
RSOS models. (6) 

In the present paper we investigate and clarify the connection between 
the eight-vertex eigenvectors and those of the six-vertex in their two 
available constructions. (1'4'5) Our results can be summarized as follows: 

1. The eight-vertex eigenvectors, in an appropriate parametrization 
which eliminates all divergences, become the six-vertex eigenvectors of ref. 5 
in the critical limit. 

2. There exists an explicit operator mapping these vectors into those 
of the usual six-vertex Bethe Ansatz [Eqs. (3.19)-(3.21), (3.26), and 
(3.27)]. 4 

3. The set of Bethe Ansatz equations of ref. 5 can be transformed in 
a natural way into those of the conventional Bethe Ansatz. 

From these results it appears evident that the integer p of ref. 5, which 
naturally represents the quantum number associated with a conserved 
quantity, is identical to the third component $3 of the total spin of the 
quantum X X Z  chain associated with the transfer matrix of the six-vertex 
model. Hence the eight-vertex index v of ref. 3 just becomes, in the critical 
limit, the eigenvalue of $3. 

In the Appendix we analyze in detail the case of the transfer matrix 
corresponding to four sites. By an explicit calculation, we show that in this 
case the two sets of eigenvectors corresponding to the two alternative Bethe 
Ansatz are in fact identical (up to an irrelevant multiplication factor). This 
is indeed the only possibility, because there is no accidental degeneracy in 
the spectrum of the four-site, six-vertex transfer matrix. 

2. THE EIGENVECTORS OF THE EIGHT-VERTEX M O D E L  
A N D  THEIR CRITICAL L IMIT  

In this section we briefly review the Bethe-Ansatz construction of the 
eigenvalues and eigenvectors of the eight-vertex transfer matrix, closely 
following refs. 2 and 3. 

4 However, due to the complicated nonlocal structure of this operator, the complete 
equivalence of the two sets of eigenvectors could not be proved in general. This problem is 
intimately related to the accidental degeneracies of the transfer matrix, about which almost 
nothing is known. 
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The R-matrix of the model reads 

R(O) = ti~ ~ !) 0b c 0 c 
(2.1) 

where the weights a, b, c, and d are parametrized as 

a(O, 7, k) = O(0) 0(7) H(O + 7) 

b(0, 7, ~) = O(0) H(7) O(0 + 7) 

c(O, ?, k) = 0(7) H(O) 0(0 + 7) 

d(O, 7, k) = H(O) H(7 ) H(O + 7) 

(2.2) 

Here, O(z) and H(z) are Jacobi theta functions of modulus k, 0 is the 
spectral parameter, and 7 is the anisotropy. The six-vertex model follows 
in the limit k ~  0, since then O(z)~0, while H(z)/x/k ~ sin z, and the 
R-matrix (2.1), once divided by x/k, reduces to that of the six-vertex 
model. 

The monodromy matrix, which is the fundamental object in the 
algebraic formulation of the Bethe Ansatz, (3) reads 

Tab(O),,p = ~ taal(0)~pltala2(0)~2&--" tan _tb(O)~N#N (2.3) 
al,..-, a N - I  

where a = (~1 ..... aN), II = (fl~,..., fiN), and every index takes two values. The 
integer N is the number of sites in the horizontal direction of a square 
lattice of size N x M, and the (normalized) local operators tab(O ) are given 
in term of the R-matrix by 

1 (O_.~)~.,b ~ (2.4) t a b ( O ) ~  = H(O + 7/2) R 7 

The monodromy matrix (2.3) is a two-by-two matrix with operator entries 
and is usually written as 

T(O) = (A(O) B(O)'] (2.5) 
\ c (o )  D(O)/ 

Its fundamental property is to satisfy the Yang-Baxter algebra 

R(O-O')[T(O)| = [T(0') | T(0)] R(O-O') (2.6) 

822/56/3-4-4 
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implying that the transfer matrix for periodic boundary conditions, v(O)= 
A(O) +D(O),  belongs to a commuting family 

[-~(0), r(0')] = 0  (2.7) 

and is therefore diagonalized by 0-independent eigenvectors. 
The construction of these eigenvectors proceeds now from (2.6) in a 

completely algebraic way. (3) One introduces the "intertwining" vectors 

( H ( z o + s - O ) )  1 / H ( z . + t + O ) )  
X n ( O ) = \ O ( z . + s _ O ) ] ,  Y . ( O ) = h - ~ 2 ~ ) ~ O ( z . + t + O )  ] (2.8) 

where 

z ,  : ny + (~ - iK')/2, h(z)  : 0 ( 0 )  O(z)  H( z )  

% = - K +  (n7 + s + t + ~ - iK') /2 

In all the above relations K and iK' represent the quarter periods of the 
elliptic functions H(z )  and O(z),  n is an integer, while s and t are arbitrary 
complex parameters. They are related by the k-dependent shift s ~ s + 
(~ - iK')/2, t ~ t + (~ - iK')/2 to those introduced in ref. 3. With our choice 
for s and t the limit k ~ 0 that leads to the six-vertex model turns out to 
be well defined. The fundamental defining properties of the intertwining 
vectors Xn and Yn are 

R(O - O')[Xn(O) | X.  + , ( 0 %  

= h(O - 0' + ?) IX,(0') | X, + 1(0)] (2.9) 

R(O - 0')[ Y. + ,(0) | Y.(O') ] 

= h ( O - O '  + 7)[ Y,+1(0') | Yn(0)] (2.10) 

R(O -- 0')[- Ym(O) | Xn(O') ] 

h(7) h(~m+,+ l + O - O ' )  
- [L . (o ' ) |  

h('c,. +,,+ 1) 

h(O- 0') h('cm+ n_,) h(-c2m+2 ) 
+ IX.+ 1(0') | Ym+l(O)] 

h(-c,. +,~ + i) h(~:~.,) 

R(O -- O')[Xm(O)|  Y,(0')] 

h(7) h(~m+. 1-0+0')  
h(r 

[Xm(O')| 

h(O-O') h ( ~ m + . + , ) h ( ~ 2 m _ 2 )  
+ [Y._1(0')| Xm 1(0)] 

h('~m+n 1) h(~'2m) 
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It follows from these equations and from the Yang-Baxter algebra (2.6) 
that, if M,(O) is the two-by-two matrix (Xn(O) Y,(O)), then the elements of 
the gauge-transformed monodromy matrix 

Tmn(O)=mm(O) -1T(O)M,(O)=(Am"(O)  Bm'(O)) (2.1l) 
\cm.(0) D~.(O)/ 

satisfy the following commutation relations: 

Om, n+ i(0) Bin+ 1,n(0 t) = Om,n+ 1(0 t) Bin+ 1,n(0) (2.12) 

Amn(O) Bin+ 1,n--1(0,) = 0~(0 -- Or) B . . . .  2(0t) A,~+ 1,n--1(0) 

-- fin 1(0--0') o . . . .  2(O) Am+l ,n- , (0 ' )  (2.13) 

D~n(O) Bm+~,n_,(O')=o~(O-O')Bm+2,n(O')Dm+~,n ,(0) 

+ fl .+i(O-O')Bm+2,.(O)Dm+L._~(O') (2.14) 

where 

h(0-~) h(7) h(0-~.) 
~ ( o ) = - - ,  ~.(o)= 

h(O) h(O)h(r~) 

Now consider the vectors 

~'ln(O)=On+l,n-l(Ol)Bn+2,nI2(O2)'"Ort+ . . . . .  (Or) ~'~(N) (2.15) 

where s N) is the direct-product state 

~r2(nU) : xn+ l(];/2 ) ~ Xn + z(?/Z ) Q ... Q Xn + N(~)/2 ) (2.16) 

and 0 =  (0~,..., Or) are, for the moment, arbitrary parameters. 5 Using the 
commutation rules (2.12)-(2.14) and the properties of 12~ N), 

AN+n,n(O) (N) _ F h(O + 7/2) ] u 12~u_ ) 
•" - L H ~  ~-~-)J 

DN+, ,(0) 12~x) = ~ h(O - 7/2) iN  0 <N) (2.17) 
" LH(O+WZ)J - " + '  

CN +n,n(O ) ~'~ (N)__ - -0  

5 Due to the double periodicity of all elliptic functions involved, one may constrain 0~,..., Or 
to lie in the fundamental rectangle. Moreover, due to Eq. (2.14), the ordering of the 0j is 
irrelevant. 
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one c a n  s h o w  (3) that the Fourier-transformed states 

+co 
~rJ~(O) = 2 ein(~tFn(O) (2.18) 

n= o~ 

are eigenvectors of the transfer matrix z(O) = A(O) + D(O) = Ann(O) + Dnn(O) 
according to 

r(0) ~ ( 0 )  = [e'OA+(O, O)+e-'OA_(O, 0)] ~uo(O) 

A + (0, 0) = F h(O + 7/2)IN 121 h(O - O, T 7) (2.19) 
- [_H(O+WZ)J ?=~ h(O-Ot)  

provided the parameters @ satisfy the so-called Bethe Ansatz equations: 

h(O l + 7/2)]N r h(Ol_ Ok nt - ])) 

= ,1 
(2.20) 

One can also show that if 7 is not a linear combination of 4K and 2iK' with 
integer coefficients, then the natural number r in the above equations must 
be equal to N/2. Moreover, the state (2.18) will vanish unless the angle 
parameter ~b takes some special values. It is argued in ref. 3 that these are 
given by 

rc~ (2.21) O=r p 

where p is an arbitrary integer (it is denoted by v in ref. 3). In the particular 
case that 7 = 4mK/Q, with m and Q positive integers, then the condition 
2r = N can be relaxed to 2r = N (mod Q) and consequently the sum over 
n in (2.t8) can be restricted to the range 0, 1 ..... Q -  1. 

Let us now consider the k--* 0 (six-vertex) limit. As mentioned above, 
in this limit the R-matrix (2.1) essentially becomes that of the six-vertex 
model, since, up to an overall factor x/-k, a--*sin(0+7), b--*sin7, 
c --* sin 0, and d ~ 0. In particular, if 0 and 7 are real, we are dealing with 
the antiferroelectric gapless regime of the six-vertex model. (~) We then 
observe that, with our parametrizations (2.2) and (2.8) of the R-matrix 
elements and intertwining vectors, resp., and with the choice (2.16) for the 
"quasi-refrence state," the limit k ~ 0 can be taken smoothly in all the 
formulas above. In particular, the intertwining vectors become 

/e'("~- Y,(O) = \ e  i,~-iu+s-~)/2j (2.22) 
Xn(O)= ~ " 10+s)), { eiO+i(t s-n,~2 ,~ 

and are compatible with those introduced in ref, 5 directly for the six-vertex 
model. It is then easy to check that the eight-vertex eigenvectors (2.15) 
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reduce to the six-vertex eigenstates as constructed in ref. 5. As for the 
transfer matrix eigenvalues [Eq. (2.19)] and the Bethe Ansatz equations 
(2.20), the k ~ 0 limit gives 

A +(8, 0) = [sin(0 _+ 7/2)] N 121 sin(0 - 0,-T- 7) 
- [ s i n ( 0 + 7 / 2 ) J  ~=~ s-~n(OZ0~ (2.23) 

Isin(0, + 7/2)] u sin(01- Ok + 7) 
~ e  ~ 2 i ~  (2.24) 

~ 7 - ~ J  = - -  s i n ( 0 , - 0 k - 7 )  k = l  

where now ~bp= P7 [cf. (2.21)]. As expected, Eqs. (2.23) and (2.24) coincide 
with those found in ref. 5. This concludes the proof that the "generalized" 
Bethe Ansatz solution of the six-vertex model (5) is the smooth k ~ 0 limit 
of the (suitably normalized) generalized Bethe Ansatz of the eight-vertex 
model. (3) 

3. THE EIGENVECTORS OF THE SIX-VERTEX MODEL: 
EQUIVALENCE BETWEEN THE TWO BETHE ANSATZE 

In this section we will study the relationship between the six-vertex 
eigenvectors constructed in ref. 5 and rederived in the previous section as 
critical limit of the eight-vertex case, and those known from earlier 
works. (1'3'4) Let us first summarize the latter well-known construction. 

Consider the R-matrix [Eq.(2.1)] ,  the local operators tab(O) 
[Eq. (2.4)], and the monodromy matrix Tab(O ) [-Eqs. (2.3)-(2.5)] for the 
six-vertex model. This means that a = sin(0 + 7), b = sin 7, c = sin 0, and 
d = 0 ,  rather than as in (2.2), and that H(0+7/2) is to be replaced by 
sin(0 + 7/2) in (2.4). Hence, from now on, 

R(o)=_ / sin(y) sin(O) 
sin(P) sin(y) (3.1) 

\ 0 0 0 s in(0+ 7) 

= 0 7 1 ( - 2)~a,b~ (3.2) tab(O)~B s in(0+7/2)  R 

The block-diagonal form of R(O) allows now for the existence of a local 
reference state l+  } annihilated by t21(O) and eigenstate of both tl~(O) and 
t22(0 ). Indeed, simply setting [+ } = (~) and [ -  } = (o), it is easy to check 
that 
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where b = sin 7/sin(0 + 7/2) and 0 -=- sin(0 - y/2)/sin(0 + 7/2). It follows from 
(3.3) that the "ferromagnetic" global state 

acts as reference state for the monodromy matrix T(0): 

=(a(o)  IN/Z) B(O)IN~2)) 
T(O) IN~2) \C(0) IN~Z)  D(O)IN~2)] 

= (IN/02) B(O) IN/2)'] (3.4) 
gN IN/a) J 

and is clearly an eigenstate of the transfer matrix v(0)=  A(O)+ D(O) with 
eigenvalue 1 +O N. According to the (algebrized) Bethe Ansatz, all the 
eigenvectors of ~(0) are of the form 

q~(4) = B(~,) B(~2) ... B(~q) IN~2) (3.5) 

where the parameters 4 = (~1,.--, ~q), 1 <~ q <~ N/2, satisfy the equations 

[ sin(~l+ 7/2)l N I~I sin(~z-- ~k + 7) (3.6) 
s in (~ t - - - -~J  = k= 1 sin(~l-- ~k-- Y) 

Notice that, as compared with the other generalized Bethe Ansatz equa- 
tions (2.24), Eqs. (3.6) differ in two respects: there is no phase factor e 2i~ 
and the integer q, unlike r in (2.24), can take all values between 0 and N/2. 
For this reason we have preferred to use different symbols, resp. O and 4, 
for the roots of the two sets of equations, which are different in general 
(unless, e.g., ~b = 0 and q = N/2). The phase factor is absent also in the 
expression for the ~(0) eigenvalues of ~(0), which now reads [cf. (2.19)] 

r(0) 'b(4) = [A+(0, 4)+A_(O, 4)] q~(4) (3.7) 

with the functional form of A+ given by (2.23). 
The Bethe Ansatz (3.5) is directly based on the commutation rules for 

the operators A, B, C, and D(O) determined by the Yang-Baxter algebra 
(2.6), with no need to introduce intertwining vectors for the R-matrix. In 
particular, the algebra (2.6) implies that [B(0), B(0')] = 0. Moreover, due 
to the U(1) invariance of the six-vertex model (aj, j =  1, 2, 3, are Pauli 
matrices) 

JR(0), e '~3 | e ix~3] = 0 (3.8) 
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the operators B(O) act as lowering step operators with respect to the total 
third component of the spin 6 

n ~ l  

It follows that the states (3.5), unlike the (k ~ 0 limit) of the generalized 
states Tn(0 ), have a definite $3 eigenvalue 

93 (~(;) = (N/2 - q) ~b(;) (3.10) 

It is natural to search for a relationship between the two alternative 
Bethe Ansatz constructions briefly described up to now. This task is most 
easily accomplished by graphical methods. Suppose we depict the local 
operators tab(O) as in Fig. 1. Then the states r have the graphical 
representation of Fig. 2. Next consider the defining relations (2.9)-(2.12) 
for the six-vertex model (that is, take k-~ 0 and drop the overall factor 
x/k). They read 

R(O -- Ot)[Xn(O) @ Xn+ i ( O t ) ]  

= sin(0 - 0' + 7) [X.(0') | X. + 1(0)] (3.11) 

R(O - 0')[ Y.+ 1(0) | Y.(0')] 

= sin(0 - 0' + y)[ Yn+ 1(0') | Yn(0)] (3.12) 

R(O - 0')[  Ym(O) | X.(0')  ] 

= sin(7) [ Ym(O') | Xn(0)] 

+ sin(0 - O')[X.+ 1(0') | Y,. + 1(0)] (3.13) 

6 Henceforth we adopt the standard notation 

n - -  1 times N n times 

A~")= I ~ " f ~ I |  A | I |  ... |  

where A is any one-site operator (i.e., a two-by-two matrix) and I is the two-by-two identity. 

Fig. 1. 

o~ 

~ i -= a b 

Graphical representation of the matrix elements of the local operator tab{O). 
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+ 

+ 

q_ s 1 

i 

I 

~q--1 

~q 

I 

~2 

~q-1 

~q 

~2 

~q 

Fig. 2. 

+ + + + 

The "conventional" Bethe Ansatz states B(~I)B({z)..-B((o)IN/2): each row 
represent the application of one global operator B((;). 

R(o - o ' ) [ x , , , ( o ) |  Y.(0')]  

= s in(y) [Xm(O') |  Y.(0)]  

+ sin(0 - 0')[  Yn - 1(0') | Xm_ 1 (0)]  (3.14) 

Let us observe that also [_+ ) can trivially act as intertwining vectors for 
the six-vertex R-matrix. In fact, by the definition itself of R(O) as a 
four-by-four matrix [see (3.1)], Eqs. (3.11)-(3.14) hold also after the 
substitution 

x,(o) - I+ ), r,,(0) --, I -  ) (3.15) 

Graphically, when 0 ' =  7/2, equations like (3.11)-(3.14) can be depicted as 
in Fig. 3 [recall Eq. (3.2)]. Noice also that the intertwining vectors for the 
six-vertex model, generically defined as solutions of Eqs. (3.11)-(3.14), can 
be written in a more symmetric and general form as [compare Eq. (2.22)] 

X + e -i(O n7)/2 ~ 

x . ( o )  = \ x _  e -i~~ n~/2), 

y + e  i(0+n7)/2 "~ 

Y,,(O) = \ y _  e_i(o+m,)/zj (3.16) 

where x_+ and y+ are arbitrary parameters. Now the generalized states of 
Eq. (2.15), 

~ n ( o ) = g n + l , n - l ( O 1 ) B n + 2 , n - 2 ( O 2 ) ' " B n +  . . . . .  (Or) ~'~(N) (3.17) 
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-•x.(o) = 

Xn+l Xn 

X.+~(O) 

-•Y.+l(O) = 

Y. Y2+~ 

- -Y . (o )  

~ --rm(o) = b(o) - - x . ( o )  

X~ Y~ 

+ ~(o) --Y,.+,(o) 

Xn+ 1 

J ~ - - - x ~ ( o )  = b(o) - - ~ ( o )  + ~(o) xm_~(e) 

Fig. 3. Graphical representation of the intertwining rules (3.11~(3.14) in the special case 
0' = 7/2. Different normalizations of tab(O) with respect to R(O) lead to different coefficients in 
the right-hand sides�9 Explicitly, /~(0) = sin y/sin(0 + 7/2) and ~(0) = sin(0 - y/2)/sin(O + 7/2). 
Everywhere X. is a short-hand notation for Xn(y/2). 

have a graphical representation very similar to that of r in Fig. 2: one 
needs just to make the suitable substitutions of q with r and ]+ > with 
X.(O), Yn(Ot), or Y.(0l) according to Fig. 4 [~-. and Yn are two-dimen- 
sional row vectors defined by 

L) = (xo r.) 

see Eq. (2.11)]. One can now repeatedly apply the "intertwining" rules of 
Fig. 3 to every crossing point of Figs. 2 and 4, starting from the lower right 
corner�9 In the first case one arrives in the end at ~b(~) in the form of a 
linear combination of states of type [~ l " ' ' ~u>  with c~j--_+1 and 
0~ 1 -~- " ' "  -~- 0~ N = N--  2q, while in the second case one gets ~ . (0)  as a linear 
combination, with coefficients identical with those o f  the previous combina- 
tion, provided q = r and ~ = 0, of states of type Xn,(7/2)| --- | X.N(7/2). 
These two combinations can be mapped one into the other by means of the 
correspondence 

Iczl " a N } ~  (~)(~Z (:2) (~ (~Z  (~) (3.18) 
�9 " Z n  ~ - - n  - -  ~ 1  ~ " " " ~ n - -  c t  I . . . .  ~ N  1 
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y~+l(01) 01 

~,+,(0,) 0= 
~ t 02 

?.+,_~(0,_~) 

O, O, 6~ 

0r_l 

~r 

r,~_,+l(0,_~ 

r,,_,(o,) 

X,~+N X,+N-] X, ,+2  X,~+a 

Fig. 4. The "generalized" Bethe states B,+I,,_i(O1)...B,+ . . . .  (O,)f2~ u). As in Fig. 3, 
x .  = x.(7/2). 

where Z~ +) = X,(7/2) and Z}, -) = Y,(7/2). It  is not difficult to derive from 
this an explicit linear map  between ~(0)  and T,(O). To this end, notice first 
that the matrix M,(O)= (X,(O) Y,(O)) can be written 

M.(O) = ei'~3/2M(O) (3.19) 

where M(O) is n independent. Then some simple matrix manipulations lead 
to 

T. (O)  = ei" 's3j f r  (3.20) 

where 

N [ ] 
J g :  1~I M(7/2)(k)exp --iTa~ k) Z ~J) (3.21) 

k = l  j < k  

We see from (3.20) that T,(O) depends on n only through the factor e i'~s3 
in front. Therefore the sum over n in Eq. (2.18) can be readily performed 
to obtain T~(0) [recall that we have taken k--+ 0: in the eight-vertex case 
the coefficients of the intertwining rules, Eqs. (2.9)-(2.12), depend on n, so 
that ~ , (0 )  has a much more involved dependence on n]. Taking into 
account that r = PT, we see that the sum over n projects T,(O) onto its 
component  with $3 - -p .  Thus, up to an irrelevant factor, we can write 

~P~(O) = P(S3 = p) J//q~(0) (3.22) 

where we denote by P(S 3 =-p) the projector onto the subspace with a 
definite value p of the third component  $3 of the total spin. 
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Let us analyze now the arguments 0 in Eq. (3.22). It is clear that such 
an equation holds for any value of 0, not necessarily a solution of the Bethe 
Ansatz equations (2.24) or (3.6). Of course, T0(0 ) is not an eigenvector of 
the transfer matrix z(O) unless 0 satisfies (2.24). Now, when p =  S 3--0, 
Eqs. (2.24) and (3.6) are identical, since then necessarily q = r = N/2. In this 
particular case the states To(0) and q~(0) are just proportional, provided 0 
satisfies (2.24). 

When p r 0 we can distinguish two relevant possibilities: 

1. Among the r roots of Eqs. (2.24), IPl have an imaginary part equal 
to - o e  i f p > 0 o r  to +oe if p < 0 .  

2. The roots "at infinity" are fewer than Ipt. 

In case 1 we find that the real parts of the roots at infinity differ from 
one another by odd integer multiples of ~/2. In detail, the analysis for p < 0 
goes as follows. Assuming 

Ok --* + i ~  + Uk, k =1 ..... IP[ (3.23) 

with u~ finite, we find that 

IpJ s i n ( 0 t -  Ok + 7) 
IJ  sin(Or- oh - 7) - e-2')'7 (3.24) 

k = l  

where the 0t, l =  Ipl + 1,..., r (r=N/2: we consider the generic case for 
which ~ is not a rational multiple of z) are finite by hypothesis. The phase 
factor (3.24) then cancels that in (2.24), leaving for the finite roots the 
equations 

[ sin(~,+7/2)] N ffI s in ( ( ' -~k  +7)  (3.25) 
sin((l _ - Z ~ j  = ~ =l s in ( ( / -  (k - 7) 

where we have quite naturally renamed the finite roots as 0~ = (t-Ipl +1 and 
q = N / 2 -  IPl. Equations (3.25) are completely identical to the conventional 
Bethe Ansatz equations (3.6). Similarly, the transfer matrix eigenvalue [see 
Eqs. (2.19) and (2.23)] associated with the roots 0 comprised of ~ and the 
roots at infinity (3.23) exactly reduce to that of the conventional Bethe 
Ansatz [Eq. (3.7)]. To complete the analysis, we have also to consider the 
equations (2.24) with the infinite roots in the left-hand side. Using (3.23) 
and 

uk - uk, = (odd integer)n/2, 1 ~< k, k' ~ JPl (3.26) 

one finds that these equations all reduce to the trivial identity eiN~= #X~. 
This completes the case p < 0. The other case, p > 0, follows analogously. 
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We can reformulate this result by saying that any set of roots ((1,..., ~q) of 
the conventional Bethe Ansatz equations (3.6) or (3.25) plus IP[ = N / 2 - q  
infinite roots fulfilling (3.23) and (3.26) provide an acceptable solution of 
the generalized Bethe Ansatz equations (2.24). The formula (3.20) relating 
the eigenstates can then be re~vritten, for S 3 = p  > 0, as 

7%(0) = P(S3 = p) ~ p ~ ( ; )  (3.27) 

where 

is B ( i ~ )  up to an irrelevant factor. Notice that the overall operator 8/p = 
P(S3 = p) Jg~P is independent of the particular set of roots ~ and depends 
only on p. Hence it provides a true linear endomorphism on the subspace 
with $3 = p of the total Hilbert space. Given a "conventional" Bethe Ansatz 
eigenvector (3.5), (3.6), q/p maps it into a "generalized" eigenvector of ref. 5. 
Moreover, since we find the same transfer matrix eigenvalues following 
both procedures, it is conceivable that the eigenvectors are exactly the 
same, up to an overall factor, unless the spectrum of ~(0) exhibits "acciden- 
tal" degeneracies. In other words, ~0(( 1 ..... (q) is necessarily an eigenstate 
also of q/p, if [Pt = N / 2 -  q, provided the corresponding z(0) eigenvalue is 
not degenerate [on the problem of the degeneracies of the transfer matrix 
almost nothing has been rigorously established, although it appears 
unlikely that the spectrum of ~(0) is degenerate, for all values of 0, in this 
anisotropic six-vertex model]. In the Appendix, as an illustrative example, 
we perform explicitly all calculations in the case N = 4 ,  where no 
degeneracies exist. In this case we find indeed that ~b((1 ..... ~q), q = 0, 1, 2 is 
an eigenvector of qlu/2 q. The eventual validity of this result for general N 
would express a new and deep property of the Bethe Ansatz construction. 

It should be noticed that the states g-'o(0) depend on the arbitrary 
parameters s and t present in the intertwining vectors (2.8) and (2.22). 
Equation (3.27) shows that in the six-vertex case such a dependence must 
be confined to the coefficients of a linear combination of z(0)-degenerate 
conventional Bethe Ansatz eigenstates. With this new information, perhaps 
the free parameters s and t might indeed play a crucial role in an eventual 
solution of the degeneracy problem. 

Let us examine now case 2. Clearly this case is possible, i.e., there can 
be solutions of the generalized Bethe Ansatz equation (2.24) with fewer 
(than [p[) roots at infinity. In a sense the most natural possibility is that 
no root is at infinity [this is the only relevant case for the "untwisted" 
conventional equations (3.6)]. One should therefore ask what states 
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correspond to these other solutions. Since both Bethe Ansatz constructions 
are expected to give all the eigenstates of the transfer matrix, no extra state 
must correspond to case 2. Indeed, an explicit computation in the case 
N = 4  shows that gtp~(0) either identically vanishes, when there are less 
than Ipl roots at infinity, or reproduces states already obtained in case 1. 
It is likely that this property can be proven in general. We want to stress 
that the whole set of solutions of the "twisted" equations (2.24) corresponds 
to nonzero and nontrivial Bethe Ansatz states, but for different eigenvalue 
problems. Let us recall that we have been studying up to now the problem 
of diagonalizing the transfer matrix for periodic boundary conditions. 
Twisted equations like (2.24) appear, however, also in the different 
problem with twisted transfer matrix 

%(0) = A(O) e i~ + D(O) e-i4 (3.29) 

where now ~b is an arbitrary twist parameter, not necessarily equal to PT. 
Notice that re(0 ) still belongs to a commuting family and commutes with 
$3. In the quantum spin chain language, this six-vertex transfer matrix 
corresponds to the X X Z  Heisenberg chain with twisted boundary condi- 
tions 

6(N+l)=e+--i~6"~), 0"(3"~ + 1) ---- 0"~ 1) (3.30) _+ 

This problem is solved by a "conventional" Bethe Ansatz 

~ ( 0 )  -- B(01) B(02).--B(Oq) IN~2> (3.31) 

where q must take all values from 0 to N/2 and the parameters 0 fulfill the 
twisted equations (2.24) and are all finite. This is just the extremum of 
case 2. By an analysis very similar to that which led to Eq. (3.27), one 
could now show that the solutions with p > 0 roots at infinity correspond 
to the (generalized Bethe Ansatz) eigenstates of the problem with shifted 
twist ~b--, ~b-p?, yielding the physical interpretation also for all inter- 
mediate situations of case 2. 

Finally, let us mention also that twisted Bethe Ansatz equations, with 
running twist ~b = PT, P = 0, + 1, _+2,..., and 7 = n/m, m = 3, 4,..., are of 
fundamental importance in the solution of the RSOS models. (6) 

APPENDIX 

In this Appendix we shall illustrate in detail, with an explicit calcula- 
tion for the case of the N =  4 transfer matrix, the relationship between the 
two Bethe Ansatz constructions examined in the main body of the paper. 

Let us consider first the "conventional" Bethe Ansatz. The 16 states of 
the four-site system can be divided according to their total $3 eigenvalue 
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p. We need consider only the 11 states with p = 0, 1, 2, the others being 
obtained simply by overall spin reversal. The state with p = 2 is just the 
reference state [2) = ]+ + + + ). The four vectors with p = 1 are given by 

[1, v ) =  B(0v)12) (A1) 

where (0v, v = 1, 2, 3, 4) are the four roots of 

sin(O+ 7/2)] 4 

sin(O-- ~ - ~ ]  = 1 

Setting zv=ei~ we find Z l = - - I  , z 2 = l  , z 3 = ( 1 - s i n y ) / c o s ? ,  and 
z 4 = l / z  3. Then, introducing the four roots of unity (el,...,e4)= 
(1, - 1 , - i ,  i), one easily calculates that, up to irrelevant proportionality 
factors, 

ll, v > = l +  §  I § 2 4 7  >§ [ §  § 2 4 7  I - § 2 4 7  

(A2) 

In the same way one could find the six p = 0 eigenstates of the transfer 
matrix of the form B(O1)B(O j 12). It is convenient here to give the 
arbitrarily twisted generalization of these vectors. Namely, we consider the 
twisted transfer matrix r~ of Eq. (3.29) with % arbitrary and N =  4. The 
corresponding $ 3 = 0  eigenstates B(01)B(02)12) ,  with 01 and 02 fulfilling 
the twisted equations 

e4i( ~ [sin(01 + ? / 2 ) ]  4 = [sin(02 + ? / 2 ) ]  4 = e2i(; s in(01 - 0 2 § y)  (A3) 
L ~ -  7-~J Lsin(02- ~-~jJ sin(01 - 01-  ?) 

are proportional to the following explicit expressions: 

10,~, 1 ) - - l u + ( ~ ) ) + ~  Iv+(~)), 

1 0 , ~ , 3 > = l u _ ( ~ ) > §  (q~)>, 

IO, ~, 5> = Iw+(~)>, 

10, ~b, 2> = lu+(%)> + ~+ ]v+(~b)> 

[ 0 , @ , 4 ) = l u _ ( % ) ) §  Iv (@)) 

IO, @, 6> = tw_(q~)) 
(A4) 

- - + + )  

- - + + >  

(A5) 

where 

tu+(~b)) : 1+ + - - ) + e'O(I + - - + ) + l -  + + - ) ) §  e2i~ [ 

Iv_+(~))= I + -  + -  )_+ +e'~ I - + -  + > 

Iw +((J)) = I+ + - - )  +-iei4(I + - -  + )  + 1 -  + + - ) ) - e  2̀ 4 [ 

4_+ = �89 to+ 1) -1 { - d  + [d 2 + 4 ( 1 + c 0 s  ~b)]1/2} 

Z + = �89 '4 - 1) I {d 4- [A 2 + 4(1 - cos ~b)] 1/2 } 
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and A = cos 7 is Lieb's parameter. We will not give here the explicit form 
of the corresponding z~(0) eigenvalues, since these are not needed in the 
following. 

Now we shall examine the generalized Bethe Ansatz. The states with 
p = 0 correspond to Bethe Ansatz equations identical to the conventional 
ones. Hence the generalized eigenstates are obtained from the states (A4), 
after setting ~b = 0, by application of the operator ~'o = P ( S 3  = 0 ) J / , (  [recall 
Eqs. (3.22) and (3.27)]. To simplify the formulation, it is convenient to use 
the symmetric definition (3.16) of the intertwining vectors. Then a direct 
application O f the matrix JiZ in Eq. (3.21) to the vectors (A4) shows that for 
~b = 0 they are eigenstates also of ~o: 

% 10, 0, v> =2v 10,0, v>, v=  1,..., 6 

with eigenvalues 

2 1 = x l e i ~ + y l e  ~ - z ~  , 2 2 = - x l e i T q - y l e - i ~ - z ~  + 

23 = x t e  ~ + y l e  ~ + 2zA, 2 4 = x l e  ~ -- y~e - ~  + 2zA (A6) 

2 5 = Xl  e#  --  y ~ e  ~ - 2zA, 2 6 = Xl  e i ? -  y l  e - ~  

2 y2_, Yl x2 2 where x l = x +  = _ y + ,  and z = x + x  y+ y . Next consider the 
case p = 1. According to Eq. (3.22), we have to apply #/1 to the four states 
(A2). Thanks to the small value of N, we can straightforwardly perform 
this calculation, again finding that these vectors are already eigenstates of 
~1. Rather than giving all the details for this case (after all, the transfer 
matrix for N =  4 has no accidental degeneracy), it is preferable to perform 
an explicit check that the extra, f in i te  solutions of the twisted equations 
(A3) do not correspond to new states, when ~b = 7, under the generalized 
Bethe Ansatz. To see this, consider the four-by-six matrix ~'ol = P(Ss  = 1) 
J [~(S3  = 0). In the (suitably ordered) standard basis I~ ~2c~3~4), ~j = __+_, 
it has the explicit expression 

/x#~3 X?]2 yq3 xr/ yt/2 yt# k 
1 /Xt]2 yr/3 Xt] 2 yq2 Xq yr/2 / = (A7) 

\ y r l4  yq3 yq2 xtl2 x t  l 

' 2 2 where r l=e  '~, x = x + y + y  , a n d y = x + x _ y + .  Now set q$=Tinexpres- 
sions (A4) and (A5) and apply (A7). One finds that t h e  six vectors 
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[u_+(y)), b + ( Y ) ) ,  and  Iw+_(7)) exactly reduce to the four states LI, v )  of 
Eq. (A2). In  detail, if s+ = 1, s = 2 ,  s'+ = 3 ,  and  s '  = 4 ,  then 

J~Ol lu+(7)> : (t/___ 1 ) ( x +  yt / ) I1,  s_+ > 

J//ol Iv+(7)> = ix  +_ y q )  I1, s+ > (A8) 

Jr Iw_+(7)) = [x(q 7- i) +_ iyqO1 +_ i))]  I1, s'_+ ) 

Equa t ion  (A8) shows tha t  the correct  p = 1 eigenstates can be recovered 
f rom the generalized Bethe Ansatz  vectors  in bo th  cases: when the right 
n u m b e r  (in this case just  one)  of roots  of the twisted equat ions (with 
r = p~) are at infinity, and also when fewer, or none at  all, are at infinity. 
In this lat ter  case, however,  the correspondence  between different sets of 
roots  and  independent  states is no longer one to one. This fact must  be 
proper ly  taken  into account  when deriving integral  equat ions  describing 
the system in the t he rmodynamic  limit N ~ oe. 

To  complete  the analysis of this N =  4 problem,  we should consider 
also the case p = 2. This is ra ther  trivial, however,  since there is only one 
state with p = 2, the reference state [ + + + + > itself. 
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